

# High-Pressure Gaseous TPCs

Jennifer Raaf (Fermilab)

July 23, 2022

Community Summer Study, Snowmass @ Seattle

NF/IF Instrumentation for Neutrino Experiments

#### Gas detectors have been critical to particle physics measurements for many decades

- Fine spatial resolution & high rate capability
- Cost-effective way to instrument large areas w/low material budget
- Operate in magnetic field, rad hard

#### Gaseous TPCs now commonly used in rare event searches

- Target material = detection medium
  - Flexibility to choose gas target (Ar, Xe, H<sub>2</sub>, D<sub>2</sub>...) and operating pressure
    - Higher pressure → more target material in the same volume
    - Lower pressure → longer track lengths
- Full 3D reconstruction capability
- Can dope with other elements to influence detector sensitivity/response



# IF08 Noble Elements: Detector Technologies

#### **Neutrinos**

- Single-phase Liquid Argon
   TPCs
- Dual-phase Liquid Argon
   TPCs
- High-pressure Argon Gas
  TPCs

•



#### **Dark Matter**

- Dual-phase Liquid Xe TPCs
- Dual-phase LAr TPCs
- Single-phase LAr
- Liquid Helium
- Noble Gas TPCs
- Liquid Argon/Xenon
   Scintillating Bubble Chambers

•



#### <u>Ονββ</u>

- Single-phase Liquid Xe TPCs
- High-pressure Xenon Gas TPCs





### Instrumentation Frontier: Future Physics Needs

#### **Neutrinos**

- Push energy thresholds down to ~1 MeV to enhance oscillation physics, study supernovae  $\nu$ s, enable solar  $\nu$ measurements,  $CE\nu NS...$
- **Reduce background rates**

- Scalability
- Unambiguous readout

#### Dark Matter & CEvNS

- **Push energy thresholds** down to 1 meV/10 eV/1 keV to enable searches for low mass DM/1 GeV **DM/WIMPs**
- **Reduce background rates** (both intrinsic and external)
- **Extend calibrations to** lower energy
- **Scalability**

#### 0νββ

**Improve energy resolution** to sub-% FWHM

**Reduce background rates** 

**Scalability** 

# Thresholds: detection $\rightarrow$ tracking







- Dark matter & OnuBB experiments have much more strict requirements than neutrino experiments, but neutrino experiments will benefit from lower thresholds too
  - CEνNS, solar neutrinos, DSNB neutrinos, SN burst neutrinos, etc





Lower density gaseous argon → particles travel further (and therefore easier to detect and reconstruct their tracks)



10 atm GAr vs. LAr: same neutrino event



Photosensor for primary scintillation (S1)  $\rightarrow$  time stamping

Charge readout or photosensor for secondary scintillation (S2)  $\rightarrow$  3D space sampling

J. L. Raaf



#### Detection channels

- Optical signal from primary scintillation light
  - Event t<sub>0</sub> tagging
  - Calorimetry
- Ionization signal: read out amplified charge or proportional optical signals
  - Tracking
  - Calorimetry

#### "Traditional" TPC readout

- Ionization charge amplification via avalanche gain in gas
  - Multi-Wire Proportional Counters (MWPCs)
  - Micro-Pattern Gaseous Detectors (MPGDs) → IF05
    - Gas Electron Multipliers (GEMs), Thick GEMs (THGEMs), Micromesh Gas Detectors (Micromegas), etc.
- Large gain improves S/N ratios
  - Achieving high gain can also mean operational instabilities (quenching S1 helps)
  - Can we find a gas that achieves good gain AND allows S1 detection?
- Good spatial resolution & dE/dx resolution
- Improvements for neutrinos & rare events:
  - Add light collection for t<sub>0</sub> tag → improved vertex resolution





# Light-based readout







- High-pressure gXe TPC: 10 atm, S1 + S2 readout
   → energy + tracking
- Excellent energy resolution (~1%)
- Improvements will primarily come from:
  - Scaling up to larger size
    - Aim to move from 10kg demonstrator size to 100kg (NEXT-100), eventually to ton-scale (NEXT-1000)
  - Background reduction
    - Radiopure materials
    - Novel ideas: Barium tagging w/fluorescence

Light-based readout alternative











- Initial demonstration & testing in gaseous TPC (100mb CF4)
   w/dual THGEMs and Am-241 alpha source
- Next step: demonstration at high pressure
- Potential benefits:
  - Reduced costs for large detectors?
  - Improvements in reconstruction fidelity



# IF08 Key Messages

- **IF08-1:** Enhance and combine existing modalities (scintillation and electron drift) to increase signal-to-noise and reconstruction fidelity.
- **IF08-2:** Develop new modalities for signal detection in noble elements, including methods based on ion drift, metastable fluids, solid-phase detectors and dissolved targets.
- **IF08-3:** Improve the understanding of detector microphysics and calibrate detector response in new signal regimes.
- IF08-4: Address challenges in scaling technologies, including material purification, background mitigation, large-area readout, and magnetization.
- **IF08-5:** Train the next generation of researchers, using fast-turnaround instrumentation projects to provide the design-through-result training no longer possible in very-large-scale experiments.

# Summary

- High-pressure gas TPCs are an enabling technology for neutrino experiments (and rare event searches)
  - Improved tracking/reco capabilities → better control of systematics for DUNE
  - More physics! CEvNS, solar, SN nu, BSM searches
- Already commonly used in DM and OnuBB
  - Neutrinos can take advantage of the many advancements that have happened thanks to past/ongoing R&D work in these areas
- NP/HEP would both benefit from joint development of these detectors

# Extra Slides

J. L. Raaf

#### Connections

- Connections with:
  - IF05 Micropattern gaseous detectors (MSGC, GEM, THGEM, MICROPIC, MICROMEGAS, InGrid, etc)
  - IFXX Light collection: scintillation, ionization, near IR, VUV



Physics opportunities with gaseous TPCs



# NEXT-White Readout **Energy plane**

# 12 Hamamatsu R11410

#### Tracking plane



## E-612 at Fermilab (active target + spectrometer)

- Study of photon diffraction dissociation on hydrogen.
  - $-\gamma +p \rightarrow X +p$
  - Active target TPC consisting of two identical 75 cm long by 45 cm diameter drift regions filled with H<sub>2</sub> at 15 bar.
  - -B = 1kG



1984



## 2D -> Full 3D Optical Readout

Silicon pixel readout chip developed by the Medipix collaboration. **Very well established** technology at CERN.

TPX3 provides simultaneous time-over-threshold (ToT) and time-of-arrival (ToA). Complete (x,y,z,E) event reconstruction using a single device.

Time over threshold provides intensity / energy measurement ->10-bit resolution.

Time of arrival provides z (drift) axis position information -> 1.6 nanosecond resolution.

Data driven readout -> Event streaming with native zero suppression.

Efficient raw data storage. Triggerless operation.







| Sensor resolution | 256x256 pixels                              |
|-------------------|---------------------------------------------|
| Pixel size        | 55μm x 55μm                                 |
| Max readout rate  | 40Mhits•cm <sup>-2</sup> •sec <sup>-1</sup> |
| Time resolution   | 1.6 ns                                      |

# Liquid vs. Gas

- Drift velocity in LAr at E = ~500 V/cm: 1.6 mm/us
- For a gaseous argon-based TPC, using pure argon is not easy for detector HV stability reasons
  - Usually need some fraction of molecular additive ( $CH_4$ , $CO_2$ ,  $CF_4$ , etc) to quench primary scintillation (which causes feedback/instability via photoelectric effect) which also often has the benefit of increasing drift velocity to  $\sim 1-10$  cm/us
- Spatial resolution
  - Existing 3mm wire pitch LArTPCs achieve ~1mm resolution
  - Existing gaseous TPCs achieve ~100's um resolution
  - Diffusion of drifting electron cloud affects spatial resolution